Hypothesis Testing Framework

Now that we've seen an example and explored some of the themes for hypothesis testing, let's specify the procedure that we will follow.

Hypothesis Testing Steps

The formal framework and steps for hypothesis testing are as follows:

  1. Identify and define the parameter of interest
  2. Define the competing hypotheses to test
  3. Set the evidence threshold, formally called the significance level
  4. Generate or use theory to specify the sampling distribution and check conditions
  5. Calculate the test statistic and p-value
  6. Evaluate your results and write a conclusion in the context of the problem.

We'll discuss each of these steps below.

Identify Parameter of Interest

First, I like to specify and define the parameter of interest. What is the population that we are interested in? What characteristic are we measuring?

By defining our population of interest, we can confirm that we are truly using sample data. If we find that we actually have population data, our inference procedures are not needed. We could proceed by summarizing our population data.

By identifying and defining the parameter of interest, we can confirm that we use appropriate methods to summarize our variable of interest. We can also focus on the specific process needed for our parameter of interest.

In our example from the last page, the parameter of interest would be the population mean time that a host has been on Airbnb for the population of all Chicago listings on Airbnb in March 2023. We could represent this parameter with the symbol $\mu$. It is best practice to fully define $\mu$ both with words and symbol.

Define the Hypotheses

For hypothesis testing, we need to decide between two competing theories. These theories must be statements about the parameter. Although we won't have the population data to definitively select the correct theory, we will use our sample data to determine how reasonable our "skeptic's theory" is.

The first hypothesis is called the null hypothesis, $H_0$. This can be thought of as the "status quo", the "skeptic's theory", or that nothing is happening.

Examples of null hypotheses include that the population proportion is equal to 0.5 ($p = 0.5$), the population median is equal to 12 ($M = 12$), or the population mean is equal to 14.5 ($\mu = 14.5$).

The second hypothesis is called the alternative hypothesis, $H_a$ or $H_1$. This can be thought of as the "researcher's hypothesis" or that something is happening. This is what we'd like to convince the skeptic to believe. In most cases, the desired outcome of the researcher is to conclude that the alternative hypothesis is reasonable to use moving forward.

Examples of alternative hypotheses include that the population proportion is greater than 0.5 ($p > 0.5$), the population median is less than 12 ($M < 12$), or the population mean is not equal to 14.5 ($\mu \neq 14.5$).

There are a few requirements for the hypotheses:

You may have previously seen null hypotheses that include more than an equality (e.g. $p \le 0.5$). As long as there is an equality in the null hypothesis, this is allowed. For our purposes, we will simplify this statement to ($p = 0.5$).

To summarize from above, possible hypotheses statements are:

$H_0: p = 0.5$ vs. $H_a: p > 0.5$

$H_0: M = 12$ vs. $H_a: M < 12$

$H_0: \mu = 14.5$ vs. $H_a: \mu \neq 14.5$

In our second example about Airbnb hosts, our hypotheses would be:

$H_0: \mu = 2100$ vs. $H_a: \mu > 2100$.

Set Threshold (Significance Level)

There is one more step to complete before looking at the data. This is to set the threshold needed to convince the skeptic. This threshold is defined as an $\alpha$ significance level. We'll define exactly what the $\alpha$ significance level means later. For now, smaller $\alpha$s correspond to more evidence being required to convince the skeptic.

A few common $\alpha$ levels include 0.1, 0.05, and 0.01.

For our Airbnb hosts example, we'll set the threshold as 0.02.

Determine the Sampling Distribution of the Sample Statistic

The first step (as outlined above) is the identify the parameter of interest. What is the best estimate of the parameter of interest? Typically, it will be the sample statistic that corresponds to the parameter. This sample statistic, along with other features of the distribution will prove especially helpful as we continue the hypothesis testing procedure.

However, we do have a decision at this step. We can choose to use simulations with a resampling approach or we can choose to rely on theory if we are using proportions or means. We then also need to confirm that our results and conclusions will be valid based on the available data.

Required Condition

The one required assumption, regardless of approach (resampling or theory), is that the sample is random and representative of the population of interest. In other words, we need our sample to be a reasonable sample of data from the population.

Using Simulations and Resampling

If we'd like to use a resampling approach, we have no (or minimal) additional assumptions to check. This is because we are relying on the available data instead of assumptions.

We do need to adjust our data to be consistent with the null hypothesis (or skeptic's claim). We can then rely on our resampling approach to estimate a plausible sampling distribution for our sample statistic.

Recall that we took this approach on the last page. Before simulating our estimated sampling distribution, we adjusted the mean of the data so that it matched with our skeptic's claim, shown in the code below.

skeptic_data = df['host_since'] - df['host_since'].mean() + 1461

We'll see a few more examples on the next page.

Using Theory

On the other hand, we could rely on theory in order to estimate the sampling distribution of our desired statistic. Recall that we had a few different options to rely on:

If relying on the CLT to specify the underlying sampling distribution, you also need to confirm: